#Large Language Model (LLM)

0 Followers · 63 Posts

A large language model (LLM) is an artificial intelligence model designed to understand and generate human-like text based on vast amounts of training data.

InterSystems staff + admins Hide everywhere
Hidden post for admin
Article Pietro Di Leo · Oct 9 6m read

Introduction

In my previous article, I introduced the FHIR Data Explorer, a proof-of-concept application that connects InterSystems IRIS, Python, and Ollama to enable semantic search and visualization over healthcare data in FHIR format, a project currently participating in the InterSystems External Language Contest.

In this follow-up, we’ll see how I integrated Ollama for generating patient history summaries directly from structured FHIR data stored in IRIS, using lightweight local language models (LLMs) such as Llama 3.2:1B or Gemma 2:2B.

0
0 0
Article Alberto Fuentes · Sep 16 4m read

In the previous article, we saw how to build a customer service AI agent with smolagents and InterSystems IRIS, combining SQL, RAG with vector search, and interoperability.

In that case, we used cloud models (OpenAI) for the LLM and embeddings.

This time, we’ll take it one step further: running the same agent, but with local models thanks to Ollama.

0
0 0
Article Alex Woodhead · Sep 13 4m read

Plug-N-Play on Pattern Match WorkBench

Article to announce pre-built pattern expressions are available from demo application.

AI deducing patterns require ten and more sample values to get warmed up.

The entry of a single value for a pattern has therefore been repurposed for retrieving pre-built patterns.

Example: Email address

Paste an sample value for example an email address in description and press "Pattern from Description".

The sample is tested against available built-in patterns and any matching patterns and descriptions are displayed.

0
0 0
Article Alberto Fuentes · Sep 1 7m read

Customer support questions span structured data (orders, products 🗃️), unstructured knowledge (docs/FAQs 📚), and live systems (shipping updates 🚚). In this post we’ll ship a compact AI agent that handles all three—using:

  • 🧠 Python + smolagents to orchestrate the agent’s “brain”
  • 🧰 InterSystems IRIS for SQL, Vector Search (RAG), and Interoperability (a mock shipping status API)
0
0 0
Question Oliver Wilms · Apr 21

I am brand new to using AI. I downloaded some medical visit progress notes from my Patient Portal. I extracted text from PDF files. I found a YouTube video that showed how to extract metadata using an OpenAI query / prompt such as this one:

ollama-ai-iris/data/prompts/medical_progress_notes_prompt.txt at main · oliverwilms/ollama-ai-iris
 

I combined @Rodolfo Pscheidt Jr https://github.com/RodolfoPscheidtJr/ollama-ai-iris with some files from @Guillaume Rongier https://openexchange.intersystems.com/package/iris-rag-demo.

I attempted to run

0
0 0
Article Alex Woodhead · Jul 1 3m read

Thank you community for translating an earlier article into Portuguese.
Am returning the favor with a new release of Pattern Match Workbench demo app.

Added support for Portuguese.

The labels, buttons, feedback messages and help-text for user interface are updated.

Pattern Descriptions can be requested for the new language.

The single AI Model for transforming user prompt into Pattern match code was fully retrained.

Values to Pattern Code Model also retrained

0
0 0
Question Oliver Wilms · Apr 27

I combined @Rodolfo Pscheidt https://github.com/RodolfoPscheidtJr/ollama-ai-iris with some files from @Guillaume Rongier https://openexchange.intersystems.com/package/iris-rag-demo.

My own project is https://github.com/oliverwilms/ollama-ai-iris

I can run load_data.py and it connects to IRIS (same container).

When I try to run query_data.py https://github.com/oliverwilms/ollama-ai-iris/blob/main/query_data.py , it cannot connect to ollama:

ConnectionError: Failed to connect to Ollama. Please check that Ollama is downloaded, running and accessible.

0
0 0
Discussion Alex Woodhead · Apr 10

Background

Embeddings is a new IRIS feature empowering the latest capability in AI semantic search.
This presents as a new kind of column on a table that holds vector data.
The embedding column supports search for another existing column of the same table.
As records are added or updated to the table, the supported column is passed through an AI model and the semantic signature is returned.
This signature information is stored as the vector for future search comparison.
Subsequently when search runs, a comparison of the stored signatures occurs without any further AI model processing overhead.

0
0 0
Article Muhammad Waseem · Apr 5 6m read

Hi Community,
Traditional keyword-based search struggles with nuanced, domain-specific queries. Vector search, however, leverages semantic understanding, enabling AI agents to retrieve and generate responses based on context—not just keywords.
This article provides a step-by-step guide to creating an Agentic AI RAG (Retrieval-Augmented Generation) application.

Implementation Steps:

0
0 0
Article janzai renato · Apr 1 1m read

# IRIS-Intelligent ButlerIRIS Intelligent Butler is an AI intelligent butler system built on the InterSystems IRIS data platform, aimed at providing users with comprehensive intelligent life and work assistance through data intelligence, automated decision-making, and natural interaction.## Application scenarios adding services, initializing configurations, etc. are currently being enriched## Intelligent ButlerIRIS Smart Manager utilizes the powerful data management and AI capabilities of InterSystems IRIS to create a highly personalized, automated, secure, and reliable intelligent life and

0
0 0
Article Luis Angel Pérez Ramos · Apr 1 5m read

I just realized I never finished this serie of articles!

In today's article, we'll take a look at the production process that extracts the ICD-10 diagnoses most similar to our text, so we can select the most appropriate option from our frontend.

Looking for diagnostic similarities:

From the screen that shows the diagnostic requests received in HL7 in our application, we can search for the ICD-10 diagnoses closest to the text entered by the professional.

0
0 0
Article lando miller · Mar 31 2m read

Prompt

Firstly, we need to understand what prompt words are and what their functions are.

Prompt Engineering

Hint word engineering is a method specifically designed for optimizing language models.
Its goal is to guide these models to generate more accurate and targeted output text by designing and adjusting the input prompt words.

Core Functions of Prompts

0
0 0
Article Alex Woodhead · Mar 30 5m read

This article shares analysis in solution cycle for the Open Exchange application TOOT ( Open Exchange application )

The hypothesis

A button on a web page can capture the users voice. IRIS integration could manipulate the recordings to extract semantic meaning that IRIS vector search can then offer for new types of AI solution opportunity.

The fun semantic meaning chosen was for musical vector search, to build new skills and knowledge along the way.

Looking for simple patterns

0
0 0
Article Rolano Rebelo · Nov 11, 2024 3m read

🌍 Inclusion & Innovation in Education 🌍
Our project reimagines learning for all students, with a focus on accessibility and interactive experiences. Built with the goal of making education engaging and inclusive, the tool is designed to support students of all abilities in learning complex material in an intuitive way.

💡 What It Does
This educational app transforms lesson presentations into interactive study sessions:

0
0 0
Article Muhammad Waseem · Apr 1, 2024 2m read


Generative artificial intelligence is artificial intelligence capable of generating text, images or other data using generative models, often in response to prompts. Generative AI models learn the patterns and structure of their input training data and then generate new data that has similar characteristics.

Generative AI is artificial intelligence capable of generating text, images and other types of content. What makes it a fantastic technology is that it democratizes AI, anyone can use it with as little as a text prompt, a sentence written in a natural language.

0
0 456
Article Luis Angel Pérez Ramos · Oct 22, 2024 5m read

Welcome to the third and final publication of our articles dedicated to the development of RAG applications based on LLM models. In this final article, we will see, based on our small example project, how we can find the most appropriate context for the question we want to send to our LLM model and for this we will make use of the vector search functionality included in IRIS.

Vector searches

0
0 0
Article Eric Mariasis · Jul 23, 2024 1m read

I implemented a Python Flask application for the 2024 Python Contest with a page that provides common form fields for an outgoing email such as the To and CC fields. And it lets you input a message as well as uploading text based attachments.
Then using LlamaIndex in Python, the app analyzes the content you put in and returns to you in a result box if there is anything that should stop you from sending that email.
Take a look at the Github repo here.

0
0 0
Article Muhammad Waseem · Jul 31, 2024 5m read

image
Hi Community,
In this article, I will introduce my application iris-RAG-Gen .

Iris-RAG-Gen is a generative AI Retrieval-Augmented Generation (RAG) application that leverages the functionality of IRIS Vector Search to personalize ChatGPT with the help of the Streamlit web framework, LangChain, and OpenAI. The application uses IRIS as a vector store.
image

Application Features

  • Ingest Documents (PDF or TXT) into IRIS
  • Chat with the selected Ingested document
  • Delete Ingested Documents
  • OpenAI ChatGPT
0
0 0